Medical Cannabis Research References
– อยู่ระหว่างการจัดทำ –

กลุ่มอาการไมเกรน
Akerman, S., Holland, P.R., Lasalandra, M.P., and Goadsby, P.J. (2013). endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and “triptan” receptors: implications in Migraine. J. Neurosci. Off. J. Soc. Neurosci. 33, 14869–14877.
Greco, R., Mangione, A.S., Sandrini, G., Maccarrone, M., Nappi, G., and Tassorelli, C. (2011). Effects of Anandamide in Migraine: data from an animal model. J. Headache pain 12, 177–183.
Greco, R., Mangione, A.S., Sandrini, G., Nappi, G., and Tassorelli, C. (2014). Activation of CB2 receptors as a potential therapeutic target for Migraine: evaluation in an animal model. J. Headache pain 15, 14.
Hoffmann, J., Supronsinchai, W., Andreou, A.P., Summ, O., Akerman, S., and Goadsby, P.J. (2012). Olvanil acts on transient receptor potential vanilloid channel 1 and cannabinoid receptors to modulate neuronal transmission in the trigeminovascular system. pain 153, 2226–2232.
Kazemi, H., Rahgozar, M., Speckmann, E.-J., and Gorji, A. (2012). Effect of cannabinoid receptor activation on spreading depression. Iran. J. Basic Med. Sci. 15, 926–936.
กัญชาต่อกลุ่มอาการอัลไซเมอร์
Aguirre-Rueda, D., Guerra-Ojeda, S., Aldasoro, M., Iradi, A., Obrador, E., Mauricio, M.D., Vila, J.M., Marchio, P., and Valles, S.L. (2015). WIN 55,212-2, Agonist of cannabinoid Receptors, Prevents Amyloid β1-42 Effects on Astrocytes in Primary Culture. PloS One 10, e0122843.
Ahmad, R., Postnov, A., Bormans, G., Versijpt, J., Vandenbulcke, M., and Van Laere, K. (2016). Decreased in vivo availability of the cannabinoid type 2 receptor in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 43, 2219–2227.
Altamura, C., Ventriglia, M., Martini, M.G., Montesano, D., Errante, Y., Piscitelli, F., Scrascia, F., Quattrocchi, C., Palazzo, P., Seccia, S., et al. (2015). Elevation of Plasma 2-Arachidonoylglycerol Levels in Alzheimer’s Disease Patients as a Potential Protective Mechanism against Neurodegenerative Decline. J. Alzheimers Dis. JAD.
Aso, E., and Ferrer, I. (2014). cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front. Pharmacol. 5, 37.
Aso, E., Andrés-Benito, P., Carmona, M., Maldonado, R., and Ferrer, I. (2016a). cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer’s Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine. J. Alzheimers Dis. JAD.
Aso, E., Andrés-Benito, P., and Ferrer, I. (2016b). Delineating the Efficacy of a Cannabis-Based Medicine at Advanced Stages of Dementia in a Murine Model. J. Alzheimers Dis. JAD.
Bilkei-Gorzo, A., Albayram, O., Draffehn, A., Michel, K., Piyanova, A., Oppenheimer, H., Dvir-Ginzberg, M., Rácz, I., Ulas, T., Imbeault, S., et al. (2017). A chronic low dose of Δ(9)-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat. Med.
Cao, C., Li, Y., Liu, H., Bai, G., Mayl, J., Lin, X., Sutherland, K., Nabar, N., and Cai, J. (2014). The Potential Therapeutic Effects of THC on Alzheimer’s Disease. J. Alzheimers Dis. JAD 42, 973–984.
de Ceballos, M.L., and Köfalvi, A. (2017). Boosting brain glucose metabolism to fight neurodegeneration? Oncotarget 8, 14273–14274.
Currais, A., Quehenberger, O., M Armando, A., Daugherty, D., Maher, P., and Schubert, D. (2016). Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. NPJ Aging Mech. Dis. 2, 16012.
Esposito, G., Scuderi, C., Valenza, M., Togna, G.I., Latina, V., De Filippis, D., Cipriano, M., Carratù, M.R., Iuvone, T., and Steardo, L. (2011). Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through pparγ involvement. PloS One 6, e28668.
Hill, M.N., Titterness, A.K., Morrish, A.C., Carrier, E.J., Lee, T.T.-Y., Gil-Mohapel, J., Gorzalka, B.B., Hillard, C.J., and Christie, B.R. (2010). Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus 20, 513–523.
Köfalvi, A., Lemos, C., Martín-Moreno, A.M., Pinheiro, B.S., García-García, L., Pozo, M.A., Valério-Fernandes, Â., Beleza, R.O., Agostinho, P., Rodrigues, R.J., et al. (2016). Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer’s disease. Neuropharmacology.
Koppel, J., Vingtdeux, V., Marambaud, P., d’Abramo, C., Jimenez, H., Stauber, M., Friedman, R., and Davies, P. (2014). CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer’s disease. Mol. Med. Camb. Mass 20, 29–36.
Libro, R., Diomede, F., Scionti, D., Piattelli, A., Grassi, G., Pollastro, F., Bramanti, P., Mazzon, E., and Trubiani, O. (2016). Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells. Int. J. Mol. Sci. 18.
Lou, J., Teng, Z., Zhang, L., Yang, J., Ma, L., Wang, F., Tian, X., An, R., Yang, M., Zhang, Q., et al. (2017). β-Caryophyllene/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Improves Cognitive Deficits in Rats with Vascular Dementia through the cannabinoid Receptor Type 2 -Mediated Pathway. Front. Pharmacol. 8, 2.
Marchalant, Y., Cerbai, F., Brothers, H.M., and Wenk, G.L. (2008). cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats. Neurobiol. Aging 29, 1894–1901.
Martín-Moreno, A.M., Brera, B., Spuch, C., Carro, E., García-García, L., Delgado, M., Pozo, M.A., Innamorato, N.G., Cuadrado, A., and de Ceballos, M.L. (2012). Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation 9, 8.
Navarro-Dorado, J., Villalba, N., Prieto, D., Brera, B., Martín-Moreno, A.M., Tejerina, T., and de Ceballos, M.L. (2016). Vascular Dysfunction in a Transgenic Model of Alzheimer’s Disease: Effects of CB1R and CB2R cannabinoid Agonists. Front. Neurosci. 10, 422.
Pascual, A.C., Martín-Moreno, A.M., Giusto, N.M., de Ceballos, M.L., and Pasquaré, S.J. (2014). Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: Modulation by cannabinoid agonists. Exp. Gerontol. 60, 92–99.
Pascual, A.C., Gaveglio, V.L., Giusto, N.M., and Pasquaré, S.J. (2017). 2-arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of amyloid beta in synaptic terminals. Neuroscience.
Ramírez, B.G., Blázquez, C., Gómez del Pulgar, T., Guzmán, M., and de Ceballos, M.L. (2005). Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. Off. J. Soc. Neurosci. 25, 1904–1913.
Sarne, Y., Toledano, R., Rachmany, L., Sasson, E., and Doron, R. (2017). Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. Neurobiol. Aging 61, 177–186.
Scuderi, C., Esposito, G., Blasio, A., Valenza, M., Arietti, P., Steardo, L., Carnuccio, R., De Filippis, D., Petrosino, S., Iuvone, T., et al. (2011). Palmitoylethanolamide counteracts reactive astrogliosis induced by β-amyloid peptide. J. Cell. Mol. Med. 15, 2664–2674.
Tolón, R.M., Núñez, E., Pazos, M.R., Benito, C., Castillo, A.I., Martínez-Orgado, J.A., and Romero, J. (2009). The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res. 1283, 148–154.
Vázquez, C., Tolón, R.M., Grande, M.T., Caraza, M., Moreno, M., Koester, E.C., Villaescusa, B., Ruiz-Valdepeñas, L., Fernández-Sánchez, F.J., Cravatt, B.F., et al. (2015). endocannabinoid regulation of amyloid-induced neuroinflammation. Neurobiol. Aging.
Wang, L., Liu, B.-J., Cao, Y., Xu, W.-Q., Sun, D.-S., Li, M.-Z., Shi, F.-X., Li, M., Tian, Q., Wang, J.-Z., et al. (2017). Deletion of Type-2 cannabinoid Receptor Induces Alzheimer’s Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3β Pathway. Mol. Neurobiol.
Wu, J., Hocevar, M., Foss, J.F., Bihua Bie, B., and Naguib, M. (2017). Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease. Eur. J. Pharmacol.
Zhang, J., and Chen, C. (2017). Alleviation of Neuropathology by Inhibition of Monoacylglycerol Lipase in APP Transgenic Mice Lacking CB2 Receptors. Mol. Neurobiol.
กัญชาต่อกลุ่มอาการมะเร็ง และอาการที่เกี่ยวข้อง
สถาบันวิจัยสมุนไพร ได้ดำเนินการวิจัยและพัฒนากัญชามาอย่างต่อเนื่องเพื่อขับเคลื่อนนโยบายของรัฐบาลอย่างเป็นรูปธรรม โดยขึ้นทะเบียนกัญชาพันธุ์ไทย 4 พันธุ์ ได้แก่ พันธุ์หางเสือสกลนครทีที 1 พันธุ์ตะนาวศรีก้านขาวดับเบิ้ลยูเอ 1 (มีปริมาณ THC สูง) พันธุ์หางกระรอกภูพานเอสที 1 (THC และ CBD ใกล้เคียงกัน) และพันธุ์ตะนาวศรีก้านแดงอาร์ดี 1 (มีปริมาณ CBD สูง) โดยได้นำสารสกัดช่อดอกกัญชาพันธุ์ไทยมาทำการทดสอบฤทธิ์ต้านเซลล์มะเร็งเพาะเลี้ยง 7 ชนิด ได้แก่ มะเร็งเต้านม มะเร็งไต มะเร็งตับ มะเร็งปอด มะเร็งลำไส้ มะเร็งสมอง และมะเร็งตับอ่อน ด้วยวิธีของไหลวิกฤตยิ่งยวด (Supercritical Fluid Extraction) ซึ่งเป็นวิธีที่สามารถสกัดสารแคนนาบินอยด์ในกัญชาได้ดี ผลการทดลองพบว่าสารสกัดกัญชาที่มี THC 1 ส่วน ต่อ CBD 6 ส่วน มีฤทธิ์ยับยั้งเซลล์มะเร็งเต้านม (MCF-7) เซลล์มะเร็งไต (A-498) และเซลล์มะเร็งตับ (HepG2) ได้ดี
Caffarel, M. M., Andradas, C., Mira, E., Pérez-Gómez, E., Cerutti, C., Moreno-Bueno, G., … Sánchez, C. (2010). cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Molecular cancer, 9, 196. https://doi.org/10.1186/1476-4598-9-196
Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzmán, M., Velasco, G., & Iovanna, J. L. (2006). cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. cancer Research, 66(13), 6748-6755. https://doi.org/10.1158/0008-5472.CAN-06-0169
Fowler, C. (2015). Delta9-tetrahydrocannabinol and cannabidiol as potential curative agents for cancer: A critical examination of the preclinical literature. Clinical Pharmacology & Therapeutics, 97(6), 587-596. https://doi.org/10.1002/cpt.84
Hall, W., & MacPhee, D. (2002). Cannabis use and cancer. Addiction (Abingdon, England), 97(3), 243-247.
Hart, S., Fischer, O. M., & Ullrich, A. (2004). cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. cancer Research, 64(6), 1943-1950.
Maida, V., & Daeninck, P. J. (2016). A user’s guide to cannabinoid therapies in oncology. Current Oncology, 23(6), 398-406. https://doi.org/10.3747/co.23.3487
Marselos, M., & Karamanakos, P. (1999). Mutagenicity, developmental toxicity and carcinogenicity of cannabis. Addiction Biology, 4(1), 5-12. https://doi.org/10.1080/13556219971786
McAllister, S. D., Chan, C., Taft, R. J., Luu, T., Abood, M. E., Moore, D. H., … Yount, G. (2005). cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. Journal of Neuro-Oncology, 74(1), 31-40. https://doi.org/10.1007/s11060-004-5950-2
McKallip, R. J., Nagarkatti, M., & Nagarkatti, P. S. (2005). Δ-9-Tetrahydrocannabinol Enhances breast cancer Growth and Metastasis by Suppression of the Antitumor Immune Response. The Journal of Immunology, 174(6), 3281-3289. https://doi.org/10.4049/jimmunol.174.6.3281
Sánchez, M. G., Ruiz-Llorente, L., Sánchez, A. M., & Díaz-Laviada, I. (2003). Activation of phosphoinositide 3-kinase/PKB pathway by CB(1) and CB(2) cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cellular Signalling, 15(9), 851-859.
Sánchez, M. G., Sánchez, A. M., Ruiz-Llorente, L., & Díaz-Laviada, I. (2003). Enhancement of androgen receptor expression induced by (R)-methAnandamide in prostate LNCaP cells. FEBS Letters, 555(3), 561-566.
Turgeman, I., & Bar-Sela, G. (2017). Cannabis Use in Palliative Oncology: A Review of the Evidence for Popular Indications. The Israel Medical Association Journal: IMAJ, 19(2), 85-88.
Velasco, G., Sánchez, C., & Guzmán, M. (2016). Anticancer mechanisms of cannabinoids. Current Oncology, 23(Suppl 2), S23-S32. https://doi.org/10.3747/co.23.3080
Zhu, L. X., Sharma, S., Stolina, M., Gardner, B., Roth, M. D., Tashkin, D. P., & Dubinett, S. M. (2000). Δ-9-Tetrahydrocannabinol Inhibits Antitumor Immunity by a CB2 Receptor-Mediated, Cytokine-Dependent Pathway. The Journal of Immunology, 165(1), 373-380. https://doi.org/10.4049/jimmunol.165.1.373
กัญชาต่ออาการลมชัก
Aghaei, I., Rostampour, M., Shabani, M., Naderi, N., Motamedi, F., Babaei, P., and Khakpour-Taleghani, B. (2015). Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors. epilepsy Res. 117, 23–28.
Alger, B.E. (2014). Seizing an opportunity for the endocannabinoid system. epilepsy Curr. Am. epilepsy Soc. 14, 272–276.
Andres-Mach, M., Haratym-Maj, A., Zagaja, M., Rola, R., Maj, M., Chrościńska-Krawczyk, M., and Luszczki, J.J. (2015). ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs. Brain Res.
Andres-Mach, M., Zagaja, M., Haratym-Maj, A., Rola, R., Maj, M., Haratym, J., Dudra-Jastrzębska, M., and Łuszczki, J.J. (2017). A Long-Term Treatment with Arachidonyl-2’-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of epilepsy. Int. J. Mol. Sci. 18.
Asaadi, S., Jahanbakhshi, M., Lotfinia, M., and Naderi, N. (2017). The Role of BK Channels in Antiseizure Action of the CB1 Receptor Agonist ACEA in Maximal Electroshock and Pentylenetetrazole Models of Seizure in Mice. Iran. J. Pharm. Res. IJPR 16, 640–647.
Bakas, T., van Nieuwenhuijzen, P.S., Devenish, S.O., McGregor, I.S., Arnold, J.C., and Chebib, M. (2017). The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. Pharmacol. Res. 119, 358–370.
den Boon, F.S., Chameau, P., Houthuijs, K., Bolijn, S., Mastrangelo, N., Kruse, C.G., Maccarrone, M., Wadman, W.J., and Werkman, T.R. (2014). endocannabinoids produced upon action potential firing evoke a Cl(-) current via type-2 cannabinoid receptors in the medial prefrontal cortex. Pflüg. Arch. Eur. J. Physiol. 466, 2257–2268.
de Carvalho, C.R., Hoeller, A.A., Franco, P.L.C., Martini, A.P.S., Soares, F.M.S., Lin, K., Prediger, R.D., Whalley, B.J., and Walz, R. (2016). The cannabinoid CB2 receptor-specific agonist AM1241 increases pentylenetetrazole-induced seizure severity in Wistar rats. epilepsy Res. 127, 160–167.
Citraro, R., Russo, E., Leo, A., Russo, R., Avagliano, C., Navarra, M., Calignano, A., and De Sarro, G. (2016). Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2’-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur. J. Pharmacol. 791, 523–534.
Devinsky, O., Cilio, M.R., Cross, H., Fernandez-Ruiz, J., French, J., Hill, C., Katz, R., Di Marzo, V., Jutras-Aswad, D., Notcutt, W.G., et al. (2014). Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55, 791–802.
Di Maio, R., Cannon, J.R., and Timothy Greenamyre, J. (2014). Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol. Dis. 73C, 356–365.
Evans, R.M., Wease, K.N., MacDonald, C.J., Khairy, H.A., Ross, R.A., and Scott, R.H. (2008). Modulation of sensory neuron potassium conductances by Anandamide indicates roles for metabolites. Br. J. Pharmacol. 154, 480–492.
Florek-Luszczki, M., Zagaja, M., and Luszczki, J.J. (2014). Influence of WIN 55,212-2 on the anticonvulsant and acute neurotoxic potential of clobazam and lacosamide in the maximal electroshock-induced seizure model and chimney test in mice. epilepsy Res. 108, 1728–1733.
Florek-Luszczki, M., Wlaz, A., Zagaja, M., Andres-Mach, M., Kondrat-Wrobel, M.W., and Luszczki, J.J. (2015). Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6Hz-induced psychomotor seizures in mice. Pharmacol. Biochem. Behav.
García-Morales, V., Montero, F., and Moreno-López, B. (2015). cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo. Neuropharmacology.
Ghovanloo, M.-R., Shuart, N.G., Mezeyova, J., Dean, R.A., Ruben, P.C., and Goodchild, S.J. (2018). Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J. Biol. Chem.
Goonawardena, A.V., Riedel, G., and Hampson, R.E. (2011). cannabinoids alter spontaneous firing, bursting, and cell synchrony of hippocampal principal cells. Hippocampus 21, 520–531.
Hill, A.J., Weston, S.E., Jones, N.A., Smith, I., Bevan, S.A., Williamson, E.M., Stephens, G.J., Williams, C.M., and Whalley, B.J. (2010). Δ9-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats: Anticonvulsant Potential of Δ9-THCV. Epilepsia 51, 1522–1532.
Hill, A.J., Jones, N.A., Smith, I., Hill, C.L., Williams, C.M., Stephens, G.J., and Whalley, B.J. (2014). Voltage-gated sodium (NaV) channel blockade by plant cannabinoids does not confer anticonvulsant effects per se. Neurosci. Lett. 566, 269–274.
Hill, T.D.M., Cascio, M.-G., Romano, B., Duncan, M., Pertwee, R.G., Williams, C.M., Whalley, B.J., and Hill, A.J. (2013). Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br. J. Pharmacol. 170, 679–692.
Huizenga, M.N., Wicker, E., Beck, V.C., and Forcelli, P.A. (2017). Anticonvulsant effect of cannabinoid receptor agonists in models of seizures in developing rats. Epilepsia.
Kaplan, J.S., Stella, N., Catterall, W.A., and Westenbroek, R.E. (2017). Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc. Natl. Acad. Sci. U. S. A. 114, 11229–11234.
Khan, A.A., Shekh-Ahmad, T., Khalil, A., Walker, M.C., and Ali, A.B. (2018). Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model. Br. J. Pharmacol. 175, 2097–2115.
Klein, B.D., Jacobson, C.A., Metcalf, C.S., Smith, M.D., Wilcox, K.S., Hampson, A.J., and Kehne, J.H. (2017). Evaluation of Cannabidiol in Animal Seizure Models by the epilepsy Therapy Screening Program (ETSP). Neurochem. Res.
Maggio, N., Shavit Stein, E., and Segal, M. (2018). Cannabidiol Regulates Long Term Potentiation Following Status Epilepticus: Mediation by Calcium Stores and Serotonin. Front. Mol. Neurosci. 11, 32.
Malyshevskaya, O., Aritake, K., Kaushik, M.K., Uchiyama, N., Cherasse, Y., Kikura-Hanajiri, R., and Urade, Y. (2017). Natural (∆(9)-THC) and synthetic (JWH-018) cannabinoids induce seizures by acting through the cannabinoid CB1 receptor. Sci. Rep. 7, 10516.
Mardani, P., Oryan, S., Sarihi, A., Alaei, E., Komaki, A., and Mirnajafi-Zadeh, J. (2018). endocannabinoid CB1 receptors are involved in antiepileptogenic effect of low frequency electrical stimulation during perforant path kindling in rats. epilepsy Res. 144, 71–81.
Naderi, N., Shafieirad, E., Lakpoor, D., Rahimi, A., and Mousavi, Z. (2015). Interaction between cannabinoid Compounds and Capsazepine in Protection against Acute Pentylenetetrazole-induced Seizure in Mice. Iran. J. Pharm. Res. IJPR 14, 115–120.
Nazıroğlu, M., Taner, A.N., Balbay, E., and Çiğ, B. (2018). Inhibitions of Anandamide transport and FAAH synthesis decrease apoptosis and oxidative stress through inhibition of TRPV1 channel in an in vitro seizure model. Mol. Cell. Biochem.
Ohmori, I., Ouchida, M., Kobayashi, K., Jitsumori, Y., Mori, A., Michiue, H., Nishiki, T., Ohtsuka, Y., and Matsui, H. (2013). CACNA1A variants may modify the epileptic phenotype of Dravet syndrome. Neurobiol. Dis. 50, 209–217.
Oliveira, C.C. de, Oliveira, C.V. de, Grigoletto, J., Ribeiro, L.R., Funck, V.R., Grauncke, A.C.B., Souza, T.L. de, Souto, N.S., Furian, A.F., Menezes, I.R.A., et al. (2016). Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. epilepsy Behav. EB 56, 26–31.
Patel, R.R., Barbosa, C., Brustovetsky, T., Brustovetsky, N., and Cummins, T.R. (2016). Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain J. Neurol.
Post, J.M., Loch, S., Lerner, R., Remmers, F., Lomazzo, E., Lutz, B., and Bindila, L. (2018). Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute epilepsy. Front. Mol. Neurosci. 11, 67.
Rakotosaona, R., Randrianarivo, E., Rasoanaivo, P., Nicoletti, M., Benelli, G., and Maggi, F. (2017). Effect of the Leaf Essential Oil from Cinnamosma madagascariensis Danguy on Pentylenetetrazol-induced Seizure in Rats. Chem. Biodivers.
Ross, H.R., Napier, I., and Connor, M. (2008). Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J. Biol. Chem. 283, 16124–16134.
Rubio, M., Valdeolivas, S., Piscitelli, F., Verde, R., Satta, V., Barroso, E., Montolio, M., Aras, L.M., Di Marzo, V., Sagredo, O., et al. (2016). Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome. Pharmacol. Res. Perspect. 4, e00220.
Rzepa, E., Tudge, L., and McCabe, C. (2015). The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers. Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. CINP.
Sales-Carbonell, C., Rueda-Orozco, P.E., Soria-Gómez, E., Buzsáki, G., Marsicano, G., and Robbe, D. (2013). Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony. Proc. Natl. Acad. Sci. U. S. A. 110, 719–724.
Shubina, L., Aliev, R., and Kitchigina, V. (2015). Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. epilepsy Res. 111, 33–44.
Shubina, L., Aliev, R., and Kitchigina, V. (2017). endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs. Brain Res. 1661, 1–14.
Spring, M.G., Schoolcraft, K.D., and López, H.H. (2015). The effects of adolescent cannabinoid exposure on seizure susceptibility and lethality in adult male rats. Neurotoxicol. Teratol.
Suemaru, K., Yoshikawa, M., Aso, H., and Watanabe, M. (2018). TRPV1 mediates the anticonvulsant effects of acetaminophen in mice. epilepsy Res. 145, 153–159.
Sugaya, Y., Yamazaki, M., Uchigashima, M., Kobayashi, K., Watanabe, M., Sakimura, K., and Kano, M. (2016). Crucial Roles of the endocannabinoid 2-Arachidonoylglycerol in the Suppression of Epileptic Seizures. Cell Rep.
Suleymanova, E.M., Shangaraeva, V.A., van Rijn, C.M., and Vinogradova, L.V. (2016). The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats. Neuroscience.
Terrone, G., Pauletti, A., Salamone, A., Rizzi, M., Villa, B.R., Porcu, L., Sheehan, M.J., Guilmette, E., Butler, C.R., Piro, J.R., et al. (2017). Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet. Epilepsia.
Tutka, P., Wlaź, A., Florek-Łuszczki, M., Kołodziejczyk, P., Bartusik-Aebisher, D., and Łuszczki, J.J. (2017). Arvanil, olvanil, AM 1172 and LY 2183240 (various cannabinoid CB1 receptor agonists) increase the threshold for maximal electroshock-induced seizures in mice. Pharmacol. Rep. PR 70, 106–109.
Vilela, L.R., Gobira, P.H., Viana, T.G., Medeiros, D.C., Ferreira-Vieira, T.H., Doria, J.G., Rodrigues, F., Aguiar, D.C., Pereira, G.S., Massessini, A.R., et al. (2015). Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity. Toxicol. Appl. Pharmacol.
Vilela, L.R., Lima, I.V., Kunsch, É.B., Pinto, H.P.P., de Miranda, A.S., Vieira, É.L.M., de Oliveira, A.C.P., Moraes, M.F.D., Teixeira, A.L., and Moreira, F.A. (2017). Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: Pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. epilepsy Behav. EB 75, 29–35.
Vinogradova, L.V., and van Rijn, C.M. (2015). Long-term disease-modifying effect of the endocannabinoid agonist WIN55,212-2 in a rat model of audiogenic epilepsy. Pharmacol. Rep. PR 67, 501–503.
Wallace, M.J., Wiley, J.L., Martin, B.R., and DeLorenzo, R.J. (2001). Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 428, 51–57.
Wang, X., Wang, Y., Zhang, C., Liu, C., Zhao, B., Wei, N., Zhang, J.-G., and Zhang, K. (2016). CB1 Receptor Antagonism Prevents Long-Term Hyperexcitability after Head Injury by Regulation of Dynorphin-KOR System and mGluR5 in Rat Hippocampus. Brain Res.
Whalley, B.J., Lin, H., Bell, L., Hill, T., Patel, A., Gray, R.A., Elizabeth Roberts, C., Devinsky, O., Bazelot, M., Williams, C.M., et al. (2018). Species-specific susceptibility to cannabis-induced convulsions. Br. J. Pharmacol.
Yu, J., Swietek, B., Proddutur, A., and Santhakumar, V. (2016). Dentate cannabinoid-sensitive interneurons undergo unique and selective strengthening of mutual synaptic inhibition in experimental epilepsy. Neurobiol. Dis. 89, 23–35.
Zareie, P., Sadegh, M., Palizvan, M.R., and Moradi-Chameh, H. (2018). Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the Pentylenetetrazol induced tonic- clonic seizures. Metab. Brain Dis.
กัญชาต่ออาการนอนไม่หลับ
Babson, K. A., Sottile, J., & Morabito, D. (2017). Cannabis, cannabinoids, and Sleep: A Review of the Literature. Current Psychiatry Reports, 19(4), 23. https://doi.org/10.1007/s11920-017-0775-9
Belendiuk, K. A., Babson, K. A., Vandrey, R., & Bonn-Miller, M. O. (2015). Cannabis species and cannabinoid concentration preference among sleep-disturbed medicinal cannabis users. Addictive Behaviors, 50, 178-181. https://doi.org/10.1016/j.addbeh.2015.06.032
Bhagavan, C., Kung, S., Doppen, M., John, M., Vakalalabure, I., Oldfield, K., Braithwaite, I., & Newton-Howes, G. (2020). cannabinoids in the Treatment of Insomnia Disorder: A Systematic Review and Meta-Analysis. CNS Drugs, 34(12), 1217-1228. https://doi.org/10.1007/s40263-020-00773-x
Bisogno, T., Hanuš, L., De Petrocellis, L., Tchilibon, S., Ponde, D. E., Brandi, I., Moriello, A. S., Davis, J. B., Mechoulam, R., & Di Marzo, V. (2001). Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of Anandamide. British Journal of Pharmacology, 134(4), 845-852. https://doi.org/10.1038/sj.bjp.0704327
Bonn-Miller, M. O., Babson, K. A., Vujanovic, A. A., & Feldner, M. T. (2010). Sleep Problems and PTSD Symptoms Interact to Predict Marijuana Use Coping Motives: A Preliminary Investigation. Journal of Dual Diagnosis, 6(2), 111-122. https://doi.org/10.1080/15504261003751887
Cameron, C., Watson, D., & Robinson, J. (2014). Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: A retrospective evaluation. Journal of Clinical Psychopharmacology, 34(5), 559-564. https://doi.org/10.1097/JCP.0000000000000180
Choi, S., Huang, B. C., & Gamaldo, C. E. (2020). Therapeutic Uses of Cannabis on Sleep Disorders and Related Conditions. Journal of Clinical Neurophysiology, 37(1), 39-49. https://doi.org/10.1097/WNP.0000000000000617
Cousens, K., & DiMascio, A. (1973). (−)δ9 THC as an hypnotic. Psychopharmacologia, 33(4), 355-364. https://doi.org/10.1007/BF00437513
Doremus, J. M., Stith, S. S., & Vigil, J. M. (2019). Using recreational cannabis to treat insomnia: Evidence from over-the-counter sleep aid sales in Colorado. Complementary Therapies in Medicine, 47, 102207. https://doi.org/10.1016/j.ctim.2019.102207
Gates, P. J., Albertella, L., & Copeland, J. (2014). The effects of cannabinoid administration on sleep: A systematic review of human studies. Sleep Medicine Reviews, 18(6), 477-487. https://doi.org/10.1016/j.smrv.2014.02.005
Guarnaccia, J. B., Khan, A., Ayettey, R., Treu, J. A., Comerford, B., & Njike, V. Y. (2021). Patterns of Medical Cannabis Use among Patients Diagnosed with Multiple Sclerosis. Multiple Sclerosis and Related Disorders, 50, 102830. https://doi.org/10.1016/j.msard.2021.102830
Hsiao, Y.-T., Yi, P.-L., Li, C.-L., & Chang, F.-C. (2012). Effect of cannabidiol on sleep disruption induced by the repeated combination tests consisting of open field and elevated plus-maze in rats. Neuropharmacology, 62(1), 373-384. https://doi.org/10.1016/j.neuropharm.2011.08.013
Lafaye, G., Desterke, C., Marulaz, L., & Benyamina, A. (2019). Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addiction Biology, 24(5), 921-934. https://doi.org/10.1111/adb.12660
Mechoulam, R., Fride, E., Hanu, L., Sheskin, T., Bisogno, T., Di Marzo, V., Bayewitch, M., & Vogel, Z. (1997). Anandamide may mediate sleep induction. Nature, 389(6646), 25-26. https://doi.org/10.1038/37891
Méndez-Díaz, M., Caynas-Rojas, S., Arteaga Santacruz, V., Ruiz-Contreras, A. E., Aguilar-Roblero, R., & Prospéro-García, O. (2013). Entopeduncular nucleus endocannabinoid system modulates sleep-waking cycle and mood in rats. Pharmacology, Biochemistry, and Behavior, 107, 29-35. https://doi.org/10.1016/j.pbb.2013.04.003
Moltke, J., & Hindocha, C. (2021). Reasons for cannabidiol use: A cross-sectional study of CBD users, focusing on self-perceived stress, anxiety, and sleep problems. Journal of Cannabis Research, 3(1), 5. https://doi.org/10.1186/s42238-021-00061-5
Mondino, A., Cavelli, M., González, J., Santana, N., Castro-Zaballa, S., Mechoso, B., Bracesco, N., Fernandez, S., Garcia-Carnelli, C., Castro, M. J., Umpierrez, E., Murillo-Rodriguez, E., Torterolo, P., & Falconi, A. (2019). Acute effect of vaporized Cannabis on sleep and electrocortical activity. Pharmacology, Biochemistry, and Behavior, 179, 113-123. https://doi.org/10.1016/j.pbb.2019.02.012
Murillo-Rodriguez, E., Blanco-Centurion, C., Sanchez, C., Piomelli, D., & Shiromani, P. J. (2003). Anandamide enhances extracellular levels of adenosine and induces sleep: An in vivo microdialysis study. Sleep, 26(8), 943-947.
Murillo-Rodríguez, E., Millán-Aldaco, D., Di Marzo, V., & Drucker-Colín, R. (2008). The Anandamide membrane transporter inhibitor, VDM-11, modulates sleep and c-Fos expression in the rat brain. Neuroscience, 157(1), 1-11. https://doi.org/10.1016/j.neuroscience.2008.08.056
Nicholson, A. N., Turner, C., Stone, B. M., & Robson, P. J. (2004). Effect of Delta-9-tetrahydrocannabinol and cannabidiol on nocturnal sleep and early-morning behavior in young adults. Journal of Clinical Psychopharmacology, 24(3), 305-313.
Pérez-Morales, M., López-Colomé, A. M., Méndez-Díaz, M., Ruiz-Contreras, A. E., & Prospéro-García, O. (2014). Inhibition of diacylglycerol lipase (DAGL) in the lateral hypothalamus of rats prevents the increase in REMS and food ingestion induced by PAR1 stimulation. Neuroscience Letters, 578, 117-121. https://doi.org/10.1016/j.neulet.2014.06.041
Reyes Prieto, N. M., Romano López, A., Pérez Morales, M., Pech, O., Méndez-Díaz, M., Ruiz Contreras, A. E., & Prospéro-García, O. (2012). Oleamide restores sleep in adult rats that were subjected to maternal separation. Pharmacology, Biochemistry, and Behavior, 103(2), 308-312. https://doi.org/10.1016/j.pbb.2012.08.028
Santucci, V., Storme, J., Soubrié, P., & Le Fur, G. (1996). Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR 141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis. Life Sciences, 58(6), PL103-PL110. https://doi.org/10.1016/0024-3205(95)02319-4
Schierenbeck, T., Riemann, D., Berger, M., & Hornyak, M. (2008). Effect of illicit recreational drugs upon sleep: Cocaine, ecstasy and marijuana. Sleep Medicine Reviews, 12(5), 381-389. https://doi.org/10.1016/j.smrv.2007.12.004
Shannon, S., Lewis, N., Lee, H., & Hughes, S. (2019). Cannabidiol in anxiety and Sleep: A Large Case Series. The Permanente Journal, 23. https://doi.org/10.7812/TPP/18-041
Shannon, S., & Opila-Lehman, J. (2016). Effectiveness of Cannabidiol Oil for Pediatric anxiety and Insomnia as Part of Posttraumatic Stress Disorder: A Case Report. The Permanente Journal, 20(4), 108-111. https://doi.org/10.7812/TPP/16-005
Suraev, A. S., Marshall, N. S., Vandrey, R., McCartney, D., Benson, M. J., McGregor, I. S., Grunstein, R. R., & Hoyos, C. M. (2020). cannabinoid therapies in the management of sleep disorders: A systematic review of preclinical and clinical studies. Sleep Medicine Reviews, 53, 101339. https://doi.org/10.1016/j.smrv.2020.101339
Sznitman, S. R., Vulfsons, S., Meiri, D., & Weinstein, G. (2020). Medical cannabis and insomnia in older adults with chronic pain: A cross-sectional study. BMJ Supportive & Palliative Care, 10(4), 415-420. https://doi.org/10.1136/bmjspcare-2019-001938
Vigil, J. M., Stith, S. S., Diviant, J. P., Brockelman, F., Keeling, K., & Hall, B. (2018). Effectiveness of Raw, Natural Medical Cannabis Flower for Treating Insomnia under Naturalistic Conditions. Medicines (Basel, Switzerland), 5(3). https://doi.org/10.3390/medicines5030075
Walsh, Z., Callaway, R., Belle-Isle, L., Capler, R., Kay, R., Lucas, P., & Holtzman, S. (2013). Cannabis for therapeutic purposes: Patient characteristics, access, and reasons for use. International Journal of Drug Policy, 24(6), 511-516. https://doi.org/10.1016/j.drugpo.2013.08.010
การใช้กัญชาในรูปแบบบุหรี่ไฟฟ้า สื่อออนไลน์ ต่อการใช้กัญชาในเยาวชน
Roberts, M. E., Tacjett, A. P., Singer, J. M., Wagner, D. D., Lu, B., Wagener, T. L., … Mohler, P. J. (2022). Dual use of e-cigarettes and cannabis among young people in America: A new public health hurdle?. Journal of Studies on Alcohol and Drugs, 83, 768–770. doi:10.15288/jsad.22-00027
Carlini, B. H., Garrett, S., Firth, C., & Pinsky, I. (2022). Cannabis industry marketing violations in Washington State, 2014–2019. Journal of Studies on Alcohol and Drugs, 83, 18–26. doi:10.15288/jsad.2022.83.18
Moreno, M. A., Jenkins, M., Binger, K., Kelly, L., Trangenstein, P. J., White-hill, J. M., & Jernigan, D. H. (2022). A content analysis of cannabis company adherence to marketing requirements in four states. Journal of Studies on Alcohol and Drugs, 83, 27–36. doi:10.15288/jsad.2022.83.27
Reboussin, B. A., Wagoner, K. G., Ross, J. C., Suerken, C. K., & Sutfin, E. L. (2021). Tobacco and marijuana co-use in a cohort of young adults: Patterns, correlates and reasons for co-use. Drug and Alcohol Dependence, 227, 109000. doi:10.1016/j.drugalcdep.2021.109000
Wills, T. A., Leventhal, A. M., Sargent, J. D., & Pagano, I. (2021). Concurrent use of e-cigarettes, combustible cigarettes, and marijuana. Pediatrics, 148, e2021050749. doi:10.1542/peds.2021-050749
Carlini, B. H., Harwick, R., & Garrett, S. (2020). Anytime is the right time: A content analysis of marijuana ads in freely distributed print media in western Washington State, USA. Substance Use & Misuse, 55, 806–817. doi:10.1080/10826084.2019.1703749